Machine Learning Evaluation
Akurasi Klasifikasi Akurasi klasifikasi adalah pembagian dari jumlah prediksi benar terhadap jumlah total prediksi. Akurasi bisa saja “menyesatkan”, dalam kasus dimana ketidakseimbangan kelas yang besar (large class imbalance). Model klasifikasi dapat memprediksi nilai pada kelas terbesar untuk semua prediksi dan bisa memberikan nilai akurasi yang tinggi dan tentu saja model yang dihasilkan dapat memprediksikan nilai yang salah, sehingga perlu metrik evaluasi lain yang dapat mengukur performa model klasifikasi yang kita buat. Metrik yang dimaksudkan adalah Precision, Recall dan Confusion Matrix. Confusion Matrix Confusion Matrix merepresentasikan prediksi dan kondisi sebenarnya(aktual) dari data yang dihasilkan oleh algoritma ML. Berdasarkan Confusion Matrix, kita bisa menentukan Precision dan Recall. Recall Recall dapat didefinisikan sebagai rasio dari jumlah total contoh positif yang diklasifikasikan bernilai benar dibagi dengan jumlah total contoh positif. H